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We consider the steady self-propagation with respect to the fluid at infinity of two 
equal symmetrically shaped vortices in a compressible fluid. Each vortex core is 
modelled by a region of stagnant constant-pressure fluid bounded by closed 
constant-pressure, constant-speed streamlines of unknown shape. The external flow 
is assumed to be irrotational inviscid isentropic flow of a perfect gas. The flow is 
therefore shock free but may be locally supersonic. The nonlinear free-boundary 
problem for the vortex-pair flow is formulated in the hodograph plane of 
compressible-flow theory, and a numerical solution method based on finite differences 
is described. Specific results are presented for a range of parameters which control the 
flow, namely the Mach number of the pair translational motion and the fluid speed 
on each vortex bounding streamline. Perturbation- theory predictions are developed, 
valid for vortices of small core radius when the pair Mach number is much less than 
unity. These are in good agreement with the hodograph-plane calculations. The 
numerical and the perturbation- theory results together confirm the recently 
discovered (Barsony-Nagy, Er-El & Yungster 1987) existence of continuous shock- 
free transonic compressible flows with embedded vortices. For the vortex-pair 
geometry studied, solution branches corresponding to physically acceptable flows 
that could be calculated using the present hodograph-plane numerical method were 
found to be terminated when either the flow on the streamline of symmetry 
separating the vortices tends to become superonic or when limiting lines appear in 
the hodograph plane givhg a locally multivalued mapping to the physical plane. 

1. Introduction and formulation 
The importance of compressibility in the cores of concentrated vortices has been 

recognized for many years (Mack 1960; Brown 1965; Kiichemann 1978, p. 368) and 
compressibility effects are present in numerical calculations of vortices in supersonic 
flow past an inclined cone (Marconi 1985). Recent experimental studies using pulsed 
laser holographic interferometry (Mandella, Moon & Bershader 1986) indicate that 
vortices produced in a compressible fluid by shock diffraction at the end of a channel 
may have supersonic flow in the core region, and that the core pressure can be less 
than 30% of the pressure at the outer edge of the vortex. 

There has, however, been little theoretical work specifically on the interaction of 
vortices in a compressible fluid, although, of course, such interactions are present, 
among many other effects, in the numerical study cited. An exception is the thin 
vortex ring, whose self-induced velocity in a compressible fluid was calculated by 
Moore (1985). The effect of compressibility on the ring velocity proved to be of the 
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order of the square of the Mach number of the circulatory motion in the core. For a 
ring of fixed dimensions and circulation the self-induced velocity decreased as the 
Mach number increased. 

I n  plane incompressible flow the analogue of a vortex ring is a pair of vortices with 
circulations of equal magnitude and opposite sense. If the circulation is I" (primed 
symbols denote dimensional variables and unprimed symbols denote their dimen- 
sionless equivalents), and the cores are small and separated by a distance 2 D ,  the 
pair advances steadily a t  a speed f' /4xD'.  Thus the flow is steady in suitably 
translating axes. 

Our objective is to study this flow in an inviscid compressible fluid, using primarily 
numerical methods so that we are not' restricted to small core sizes or small 
compressibility effects. For these latter cases we employ a perturbation method due 
to Barsony-Nagy, Er-El & Yungster (1987). 

The flow outside the cores will be taken to  be irrotational and isentropic and it 
remains to specify the conditions within the cores. For simplicity, we insist that the 
fluid within the cores is stagnant, so that the core boundaries are curves on which the 
pressure, or equivalently, the fluid speed is constant. We denote this constant value 

An upper bound on the possible values of q; is provided by the requirement that 
by 9;. 

the core pressure be non-negative. Thus qt < 9;. where 

and c*' denotes the sound speed at  the sonic point. If y = 1.4, which we assume 
throughout, qLv = 2.45 ... c*', so that the flow field can contain extensive regions of 
supersonic flow if the assigned value of qk is sufficiently large. Thus our numerical 
method must be able to  deal with transonic flow. 

We define 20 '  to  be the separation between the centres of vorticity of the cores. 
Then the physical quantities determining the flow are r, D ,  qk, c', and p k ,  where 
c', is the sound speed a t  infinity and p', the fluid density at infinity. Given these 
quantities, we must find a flow field with velocity potential $'(XI, y') such that the 
core boundaries are both streamlines and constant-pressure lines and 

$' - -qkx' as x'2+y'2+co, (1.2) 

where q', is the velocity of advance of the pair. 
We are assuming a steady flow to exist in axes Ox'y' fixed in the vortex pair; 

specifically, the vorticity centroids are a t  (0,D) and (0, - D o ,  the core a t  (0, D') 
having circulation r a n d  that a t  (0, - D') circulation - r. 

We shall go on to  impose reflectional symmetry of the core boundaries in both 
axes. However, we do not, assert there are no other solutions, because experience with 
free-boundary problems has shown that less symmetric steady solutions can 
bifurcate off solutions of obvious symmetry (e.g. Chen & Saffman 1980 for the Stokes 
wave case). Perturbation theory suggests that this symmetry is the only possibility 
for small cores, but the question of other solutions remains open, because our 
numerical method cannot detect the relevant bifurcations. 

Dimensional analysis shows that 
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so that we have a two-parameter family of solutions to deal with. When r/D c', = 
0, the flow field is incompressible and was determined by Pocklington (1894) by using 
Kirchhoff s free-streamline theory. Although our detailed procedure uses different 
non-dimensionalization we have, in essence, been able to start with a known solution 
for a chosen value of the first parameter, which is a measure of the size of the vortex, 
and then increase the second, which is a Mach number M ,  = rV/Dc',, from zero. 

The fact that the flow speed is known on the internal boundaries suggests that the 
problem can be conveniently formulated in the hodograph plane. We consider this in 
the following section. 

Our assumption that the flow field exterior to the cores is isentropic and 
irrotational implies that there are no shock waves. Since the flow field contains 
stagnation points, it is likely that a shock-free flow exists only if M ,  = qk/c', < 1. 
We have imposed this condition in our detailed formulation. 

2. The hodograph plane 

We now dimensionalize by writing 
2.1. Non-dimensionalization 

x' = L'x, y' = L'y, t' = T t ,  

where t' is the time and, for the density p'(x',y'), 

pl = IM'L'-3p, (2.2) 

where unprimed quantities are non-dimensional. An unusual feature of the problem 
is that a convenient choice of the length, time and mass scales L', T and M' is not 
at this stage apparent. This is because our work will be done in the hodograph plane, 
and D and I" are thus not available as basic scales at the outset. We are however 
free to choose p, = 1, so we have 

L'3p',M'-' = 1 (2.3) 

as one relation between our scales. 

2.2. The j b w  in the hidograph plane 

When we impose reflectional symmetry in both axes the flow field and boundary 
shapes need be determined only in the +plane x , y  2 0. Thus we have the 
configuration sketched in figure 1. 

We introduce a velocity potential $(x,  y) and a stream function +(x,  y) such that 
the velocity field (u(x, y), v(x, y)) is given by 

from which it follows that (Milne-Thomson 1966, 3 15.44) 

where z = x + iy, and u - iu = q e-ie, so that 
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and 

Compatibility of these equations gives 

and 

We also have Bernoulli’s theorem 

and the isentropic flow relation 

(2.10) 

(2.11) 

where c(z, y) is the local sound speed and c, the stagnation sound speed. Elimination 
of 4 from (2.8) and (2.9) and use of (2.10) and (2.11) leads to the equation 

which we shall write, for brevity, 9($) = 0. This is the governing equation for the 
flow in the (q,B) or hodograph plane. 

Next we must deermine the image in the hodograph plane of the boundary A B  
00S0 (figure 1) of the flow region in physical space. Starting at 0 where q = Po, we 
note that on OA, 0 = 0; on AB, q = qv, which is prescribed, and on B a, 0 = x .  At 
00, 6 = x and q = qm ; on 00 S, 6 = x ; at S, q = 0 and 0 < 6 < x and on SO, 8 = 0. 
Thus, as sketched in figure 2, the flow domain in the hodograph plane is the rectangle 
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0 Q q Q qv, 0 < 8 < x.  We note that the mapping between the physical plane and the 
hodograph plane must be singular on the boundary of the flow domain, because the 
hodograph image of the point S is the interval q = 0 , O  < 8 < x.  We shall deal with 
the effect of this singularity in due course. 

It remains to find the boundary values of + in the hodograph plane. We choose + = 0 on the axis of symmetry 00 SO and @ = eV on the vortex boundary AB. The 
boundary condition on OA or B 00 is derived by noting that on these lines az/aq = 
0, while 8 = 0 on OA and 8 = x on B,. Thus (2.6) gives a#/aq = 0 so that (2.8) gives 

We are thus led to the formulation of the problem in the hodograph plane sketched 
in figure 2. The crucial point is that, unlike the case of flow past obstacle of prescribed 
shape, the physical boundary conditions yield a complete specification of the 
hodograph-plane problem. Thus the principal difficulty traditionally associated with 
the hodograph method disappears. It is this, rather than the linearity of 9, which 
makes the hodograph-plane method viable. We have, however, to pay a price for this 
reduction of the original free-boundary-value problem, because we are restricted to 
streamlines on which 8 lies between 0 and IC. Thus, in particular, the vortex-core 
boundary cannot develop a waist at AB, because this would involve values of 8 less 
than zero and greater than ~t. It will later be shown that this restricts solutions that 
can be obtained with the present method to those for which the local Mach number 
M, = qo/co at 0 satisfies M, < 1. 

We now examine the hodograph-plane formulation in more detail. First we note 
that the parameters qo and ev are unknown. Secondly we observe the change in type 
of the boundary condition on + at the points (qo, 0) and (qa, x ) .  This switch will cause 
$ to have singularities at  these points and we must determine the form and strength 
of these singularities by examination of the flow in the physical plane. We note that 
for solutions with a hodograph of this form qo < qv. 

ae/ae = 0. 

2.3. T h  singularitiee at 00 and at 0 
We choose to examine the nature of the singularities first. As remarked in 51, we 
amume that the flow at 00 is subsonic, since a shock-free flow field seems unlikely 
otherwise. Then the flow at large distances from the pair is a uniform stream ( -q,, 
0) plus a small perturbation, whose form can be found from the subsonic version of 
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linearized-flow theory. Introducing the appropriate Mach number M, = q,/c,, we 
find that the velocity potential is 

(2.13) 

where the second term is a dipole of strength A, distorted by the PrandtlGlauert 
transformation, with unknown strength and with orientation determined by the 
reflectional symmetry. To leading order (recalling that pm = l), the stream function 
is given by 

Ilr= -qrnY, (2.14) 

while the velocity field is given by 

A((1 -M&)  y2-x2)  
- q m -  (2"(1-M:)y2)2 

U =  

and 
2Azy( 1 -M%) 

(2"+(1--M:)y2)2' 
V =  

(2.15) 

(2.16) 

note that (2.16) shows h > 0 since v > 0 from figure 1. If we eliminate x and y from 
(2.14), (2.15) and (2.16) we find that, to leading order, 

9 - A S - f  COS$~, (2.17) 

where local quasi-polar coordinates in the hodograph plane are defined by 

the constant A is given by 

A = - q '  p, A*( ' 1 - M2,)". 

(2.18) 

(2.19) 

This singular behaviour is worse than might have been anticipated. For the 
Laplace operator (to which Y reduces near (qm, 0) after a Prandtl-Glauert stretching) 
conformal mapping shows that the natural singularity a t  a change of type is 

$ - B S; COS@. (2.20) 

Thus the principle of 'minimum singularity' fails here and we must find a way to 
impose the behaviour (2.17). We can show (Appendix A) that 

+- ~ , + B ~ C O S ~ + ~ ( S ~ )  as (q ,O)+(q , ,n) ,  (2.21) 

where 
= A(& cos@+sf(B, cos~8+BB, C O S ~ ) ) ,  (2.22) 

where B, and B, are known and B is unknown. We now write 

and solve 
(2.23) 

(2.24) 

subject to modified boundary conditions and the requirement that & has singular 
behaviour of type (2.20) at (q,, n) and - as is shown by local analysis in the physical 
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plane - at (qo, 0) also, provided that M ,  < 1 .  Our method of implementing this 
requirement will be described in $ 4 .  

Clearly A is a fundamental constant of the problem and we complete our 
specification of scales by imposing A = - 1 and q, = 1. Thus 

q; T'E-1 = 1, A'L'-2T' = - 1, (2.25) 

so that (2 .3)  and (2.25) fix E,T' and M in terms of the physical quantities &,q& 
and A'. In conformity with our convention A' and A' are the dimensional quantities 

whose dimensionless forms are A and A. The characterisation of the pair by the 
quantities q& and A' rather than D and r is unusual, but is forced on us by our 
method of solution. For a vortex pair with very small cores in an incompressible 
fluid 

)Y 

q; = 1 
47rD' (2.26) 

and 

so that I" and D are easily determined from q; and A' in this case. Also, for this case 

We must at this point refer to a potentially serious difficulty, which is that we do 
not know if the solution of the above boundary-value problem is unique. Since the 
boundary-value problem is linear, this is equivalent to asking if the homogeneous 
problem obtained by setting A = $, = 0 has a non-zero solution. The difficulty is in 
the transonic case where the eigensolutions correspond to stationary sound waves 
trapped in the recirculating region near the vortex. Indeed, sound waves of 
infinitesimal amplitude can be trapped in the potential vortex, recirculating flow 
around the exterior of a rigid circular cylinder if the Mach number based on the 
cylinder diameter takes certain critical values (Taylor 1930). 

If eigensolutions exist at critical values of M,, our non-homogeneous problem 
would have no solution at  these critical values. Near such an eigenvalue our problem 
would be ill-posed and the solution would vary rapidly with M,. We shall consider 
this question again in $5 when we examine our results. 

q o  = 3PW 

2.4. The unknowns qo and $, 
We now return to what is the sole remaining problem in determining $(q, e), namely 
that qo and $, are not known and must be determined as part of the solution. 

First, we note that because of the singularity in the mapping at S, imposition of 
the boundary condition $ = 0 on q = 0 is insufficient to ensure the correct behaviour 
of $ as q -+ 0. Near the stagnation point the effect of compressibility can be neglected 
and 

$ - exy, (2.28) 

so that pou - ex (2.29) 

and pow- - e  Y ,  (2.30) 

where po is the stagnation density and e is a constant. Hence, as q + O  we must 
have 

(2.31) 
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Now the full equation has, for q < 1, the exact solution 
03 

+(q, 8 )  = C Q,(q) sinno (0 < 6 < R), 
1 

(2.32) 

where G,(q) - gnqn as q+O. Comparison with (2.31) shows that the n = 1 term must 
be absent from the expansion (2.32), which is satisfied if 

(2.33) 

for any q1 such that 0 -c q1 < 1. 
Secondly, we remark that the image in the physical plane of the line segment 

q = qz, 0 < 8 < R, must begin and end at  2 = 0 (i.e. xA = zB in figure 1) for every qz 
such that qo < qz < qv. Use of (2.5) and (2.9) gives 

(2.34) 

and it is easy to show from the separated solution that this holds for all qz in the 
interval if it  holds for one. 

3. Constructing the physical plane 
The numerical procedure to be described in 94 yields the unknown parameters qo 

and +hv and the stream function +(q,O). In  this brief section we consider the 
construction of the physical plane sketched in figure 1. 

Suppose I is a curve in the (q, 8)-plane defined by the equations 

dO 
- = sin [ 8 ( q ,  O ) ] .  
dP 

where p is the arclength on the curve and 8 is the angle between the local tangent 
to 1 in the direction of increasing p and the q-axis. The curve I might be q = constant, 
in which case 8 = &$R, or 8 = constant, with 8 = 0, -R, or I might be a streamline 
when 

- $9 

(+: + +$’ 
sin [6(q,  O)]  = 

(3.3) 

(3.4) 

Then the complex representation z(p) of the image of 1 in the physical plane 
satisfies 

dz az dq az d8 +--, 
dp aqdp aOdp 
-=-- (3.5) 



Compressible vortex pair 179 

which leads to 

in view of (2.6)-(2.0). Equations (3.1), (3.2) and (3.6) constitute a real fourth-order 
autonomous system to determine xb), yb),  q(p) and Oh), given x(O), y(O), q(0) and 

The physical plane image of 2 given by (x(p),  y(p))  will-in general-exhibit 
e(o) say. 

cuspidal behaviour if dz/dp has a simple zero. This will happen if 

and 

Now cos 8 and sin 8 cannot simultaneously vanish. Thus a necessary condition for 
cuspidal behaviour is 

leading to 
q a+ 1 as 

= -2 [ (qy +? ( (1 -$)I = 0, 

where c is the local sound speed. 
From a standard result, 

(3.10) 

(3.11) 

so that (Landau & Lifschitz 1959, p. 432) 8 necessary condition for the success of the 
hodograph method is that 

(3.12) 

We monitored the values of d obtained numerically and rejected any solutions in 
which regions of positive A developed. Another result which tests the consistency of 
the results is Nikolskii & Taganov’s theorem (Landau & Lifschitz 1959) which states 
that the velocity vector rotates monotonically on the sonic line. 

4. Numerical method 
4. 1. Numerical method 

A direct finite-difference numerical solution of (2.24) on a uniform grid in the (q, 8)- 
plane proved impracti‘cal for several reasons. First, large values of qv for some cases 
would then require unrealistically large numbers of grid points to achieve resolution. 
Secondly, we decided that in order to reduce errors it was desirable to fix the singular 
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point q, = 1, and the (variable) singular point q = qo a t  or near a cell centre. Hence 
prior to differencing we utilized a simple univariate stretching in the &direction, and 
an adaptive local stretching in the q-direction of the form 

Under the stretchings (4.14.2),  (2.24) becomes 

subject to the boundary conditions, obtained from figure 2 and (2.23), 

s-00: $ = O ,  
CO-B: & , , = O ,  

B - A :  $ = $v-$s(l ,q) 

1 0-29: $ =  -$&,O), 

s-s: $ = -$hs(0,q), 

and $s = $Jq(t),  8(q)] is given by (2.22). 
When qv < qev we have a two-parameter (qv, M,) problem which we shall refer to 

as the compressible Poklington (1894) vortex (CPV). When qv = qev we reach a 
singular limit of the CPV where the vortex pressure is zero. Here qev = qev(M,) (see 
(5.4)) and we have a one-parameter (M,) problem which we shall refer to as the 
evacuated vortex (EV). In either case, for fixed parameters, the method of numerical 
solution adopted presently divides into two parts : an inner algorithm where the 
linear problem (4.1)-(4.5) is solved numerically for fixed qo, $v, and an outer 
algorithm where qo and $" are determined by Newton iteration on the (2x2)  
nonlinear problem given by (2.33)-(2.34). We first describe the inner algorithm. 
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4.2. The inner problem : the $finite difference method 
The mixed elliptic (0 < q < c*)-hyperbolic (c* < q < q,) equation (4.3) was solved 
numerically using second-order central differences on a fixed grid 

6, = jAE, j = O...J,  

Vi = i A 7 ,  i = O...I, 

Equation (4.7) concentrates cells near 0 = 0,x when ee > 0. If eq = 0, (4.8) reduces 
the cell density near q = qv when aq > 0. If eq is small, the amount of stretching is 
nearly the same but the formula can be tuned to ensure that E(q,) and &,) lie at 
cell centres. 

In practice, values of a,, eq and /3 were calculated as follows: first an estimate of 
aq based on the desired amount of $,retching was specified in the outer algorithm. 
Nqxt eq was set ?qua1 to zero and goAand E, computed from the requirements that 
q(Eo) = qo and q(E,) = 1. The points 5, and 5, will not be at cell centres, but we can 
define 6, and 6 ,  to be the coordinates of the closest cell centres, so for some integers 

Next the parameter /3 was determined from 

2(1-exp ( - i V ( E o + E m ) ) )  = 1, (4.10) 

which ensures that the second term in (4.8) has differed signs at  5 = 6, and E = 6,; 
we found this restriction desirable. Once calculated, Em, go and /3 remain fixed 
throughout the computation of the outer problem. For each solution of the inner 
problem, aq and eq were then found by requiring 

(4.11) 

This adaptive q-stretching ensured that q, = 1 and q = qo always remained neart cell 
centres while maintaining overall local stretching corresponding approximately to 
the prechosen aq. Variations of aq were O(A6) and E, was always O(A€J. 

The discrete solution domain 9 consists of all grid points (j,i) at which $,# is 
unknown, Thus, because of the switch in boundary conditions, 9 increases in height 
as j increases through the switch values j, and j,; the upper step at j, is shown in 
detail in figure 3. We obtain linear equations for the unknowns $,i by insisting that 
the finite-difference form of (4.3) holds at each point of 9. We must next explain how 
we deal with the boundary points of D -ahere the stencil protrudes from 9. 

Implementation of the Dirichlet boundary conditions in (4.5) was straightforward. 
For the Neumann boundary conditions, ghost points outside 9 were defined at 

1 -exp ( -P I  

q ( E m  ; aq, eq) = 1, d E 0  ;aq, €9)  = ~ 0 .  

(4.12) I 7-1= -AT), [ ,=jAE, j = j  o. . .J-l ,  
qr+l = ( I + l ) A v ,  (,=jag, j =j ,... J-1. 

t Near, not exactly, because we solved (4.1 1) approximately. 
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FIQURE 3. Finite-difference grid near singularity at 0 = [la, x] in the [c, 71-plane. 0,  grid 
point; x , ghost point. 

The $,, of these points are easily expressed in terms of their mirror-image values from 
the symmetry properties of $. Second-order difference forms of (4.3), and also of the 
derivative boundary conditions in (5.4) were then applied at  

qo = 0, Ej = jAE,  j = jo...J-l, 

qI = n, f$ = j A 5 ,  j = j, ... J - 1 .  
(4.13) 

The residual unforced 84 singular behaviour (see (2.20) and Appendix A) for $ near 
(q, 6) = (1, n) and for $ near (q, 6) = (qo, n) was injected onto the difference grid in 
the simplest possible way. Assuming that (2.20) is valid locally within the cell con- 
tlaining (&q) = (E,,n) on its boundary in figure 3, a linear relationship between 
hrnJ and I-1 containing known coefficients is easily found. This was then used to 
eliminate $jm,I when the difference stencil was applied tt  (i, i) = (i, + 1, I) and at  
(j, i) = (im,I- 1). A similar scheme was used to eliminate @,e,o near (q, 6)  = (qo, 0). We 
note that the injection of unforced singular terms i.e. those containing unknown 
constants as in A 11) to O(s:) only may lead to errors in $ near the singularities of 
O(h:), h = A[ or Aq. Some improvement may be expected by use of a local expansion 
to higher order than that given in Appendix A. However, the coupling of higher- 
order terms into the difference grid in a rational way substantially increases the 
bandwidth of the resulting linear equation system. 

For known (qo, $,), the boundary-value problem now reduces to (J- 1) (I+ 1)- 
(jm+jo) linear equations for an equal number of unknowns. The use of central 
differences in the hyperbolic as well as in the elliptic subdomain will generally 
preclude the successful iterative solution of the linear equation system. Although the 
use of upwind differences in the hyperbolic subdomain may allow iterative solution, 
this was rejected in favour of uniform central differences and a direct method because 
of our desire to yliminate uncertainties from the novel hodograph-plane problem. 
Numbering the $,* i-wise then gave a bandwidth of 2I+3. The linear system was 
solved in 14-figure arithmetic using a vectorized banded solver kindly supplied by 
Dr B. Fornberg. 

4.3. The outer problem 
Once the ejt are known the integrals in (2.33) and (2.34) may be evaluated. This was 
done using central differences for the derivatives, and the periodic trapezoidal rule 
for the integrals, after using symmetry to extend the integration range to (0,2n). 
Equation (2.34) was evaluated on i = 2. For the CPV, (2.35) was evaluated on 
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j = J-2  while for the EV a special form of (2.35) was used (see (4.20)). The outer 
problem may then be written as 

(4.14a, b) 

that is, two equations for two unknowns qo and $v. 
This was solved by Newton iteration, evaluating the Jacobian by central 

differences thus requiring 5 solutions of the inner problem per outer iteration. 
Convergence of the outer problem was accepted subject to 

I I ,  I < lo-'', k = 1,2 

and A < 0 (equation (3.10)) in the solution domain. 
Starting values of qo and $v for the CPV cases were obtained from the Pocklington 

theory valid for M ,  = 0. Then aa M ,  was increased in steps at fixed qv, previous 
converged values of qo and $v were used to extrapolate as M, was increased in steps 
at fixed qv ; previous converged values of qo and $v were used to extrapolate starting 
values. For the EV caae we obtained analytic estimates for qo (equation (6.10)) 
and $, (equation (B 10)) valid in the limit of core radius R 4 D ,  equivalent to 
M, 4 1 ; these values were used to start the Newton iteration at the smallest value 
of M, considered. 

4.4. Special procedure for the EV 
For the EV computations, some special treatment of the inner problem was required 
owing to the singular behaviour of $(q, e), q+qev. For q > qo,qv = qev, it may be 
shown that the solution of (2.12) which satisfies the boundary conditions of figure 2 
and which has the required behaviour when q+ qev can be written aa a separated 
solution of the form 

11(!70, $v; q1) = 0, 1 2 k 0 ,  $v ; q2)  = 0; 

03 

9 = $.,+ D, cos(n6)rin(l-r)*F(c-b, c-a, c - a - b + l ,  1-r), (4.15) 
n-0 

c = n+ 1, 

I (4.16) 

where F is the hypergeometric function, and D,, n = 0.. . , are unknown coefficients. 
Together with the density equation for qv = qev, 

P = [icy - 1) M2,(qgV - q*)I% (4.17) 

Expanding the hypergeometric functions in (4.15) in powers of 1--7 shows that 
(4.15) may be used to show that (2.34) is satisfied automatically when D, = 0. 

$ = $ v + ( 9 v - - ~ ~ [ ~ l ( e ) + ~ 2 ( e )  (w-cI)+E,(~) ( iv-~)e+o(~v-~)31, (4.18) 

where the I#,(@, s = (1, 2, 3) are unknown functions of 0 only. Hence when y = 1.4, 
$ is weakly singular as (qv-q)3*6 when q+qev. The use of second-order differences in 
[(q) near [ = 1 (q = qev) assumes however that $ is locally well represented by a 
second-order polynomial, and this was found to give irregular behaviour for $ near 
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the vortex boundary. A more appropriate difference approximation was thus 
obtained by assuming a local three-term solution of form (4.18) centred on q = q,, 
J-J,, <j < J- 1, and a local two-term solution (neglecting E3) near (q, = qev). 
The q-derivatives in (2.12) were then evaluated in terms of the unknowns E,(B,), 
i = O.:.I at eachA j. ThFse Latter quantities may easily be expressed aa linear 
combinations of $,-l,i, $,,i, $j+l,i using (4.18) and (2.23). Using centred differences 
for in (2.12) then gives a special stencil for use at gridpoints j = J-J ev...J-l, 
i = 0.. .I, which preserves the singular behaviour of $ near the vortex. For the outer 
problem (2.34) (also (4.14b)) reduces to 

I 2 ( q o ,  9,; qev) = r ~ l ( 8 )  cosede. (4.19) 

Once El(8 )  is known, computation of the vortex boundary shape in the physical 
plane is straightforward. Here we used J,, = 4 or 8 depending on the values of qev and 
the grid size (J x I). 

0 

5. Results 
5.1. Range of parameters 

For the most part the CPV computations discussed here were calculated on each of 
two finite-difference grids with (J x I) = (76 x 20) and (150 x 40) respectively. Owing 
to the very large values of qev( = O( lo2)) for the EV, grids of size (J x I) = (300 x 40) 
and (600 x 30) were used. The only input required was M,, qv and a g  together with esti- 
mates of the target aq. Where overall stretching was not required, (a4, a,) = (O(h),  0) 
were used. With qv = 2.5 and 3.0, the smallest values used here (a4, a@) x (-3,0.3) 
and (a4, ole) x ( -  1,0.2), respectively, were chosen since here qo +qv so that the region 
between the x-axis of symmetry and the vortex bottom boundary near A in figure 
1 becomes nearly singular in the (q,O)-plane (e.g. note the regions of large 
&derivative in figure 6). When qv > 10 for the CPV and for all EV computations, 
3 5 aq 5 8. 

Generally results are presented with the scale specification qm = 1, A = - 1  (see 
(2.25)) but constructions of the physical plane will usually have q, = 1, r= 271. 
Transformation between these scales simply requires length rescaling by r/21t. All 
calculations presented have y = 1 .4. 

5.2. Test of the numerical method 

When M ,  = 0, the CPV computations recover the single-parameter (qv) family of 
solutions corresponding to the hollow-core vortex pair in an incompressible fluid 
studied by Pocklington (1894). As a check on the present method a comparison 
between the important physical parameters of these solutions and those obtained 
from the present method when M ,  = 0 is given in table 1.  The numerical evaluation 
of the incompressible Pocklington solutions are accurate to better than O( 
There is substantial three-figure agreement between these solutions and the present 
hodograph-plane solutions, with (J x J )  = (150 x 40), for most quantities, which is 
consistent with expectation of errors O(h)2 from use of second differences for both 
the field equation and the boundary conditions. An exception is the prediction of 
qo. This quantity, which is about equal to 3 (qo = 3 exactly for the incompressible 
point-vortex pair), always exhibits errors which increase with increasing qv to O( 1 %) 
for qv = 10 and qv = 20. When qv % 1,  fewer grid points in the q-direction are 



Compressible vortex pair  185 

J x Z  9, 
76x20 2.5 

150x40 2.5 
Pocklington 2.5 

76x20 3 
150x40 3 
Pocklington 3 

76x20 5 
150x40 5 
Pocklington 5 

76x20 10 
150x40 10 
Pocklington 10 

150x40 20 
Pocklington 20 

a 40 

-2.994 2.420 
-2.998 2.424 
- 2.426 9 

-0.997 2.697 
-0.994 2.687 
- 2.691 0 

0.083 2.985 
0.066 2.973 
- 2.9592 

0.073 3.035 
2.997 6 

2.897 3.040 
- 3.0000 

-0.086 3.073 

- 

$" 
0.4808 
0.4846 
0.487 73 

0.6405 
0.6404 
0.64045 

1.119 
1.118 
1.1173 

1.804 
1.802 
1.8032 

2.494 
2.496 1 

Area 

0.494 2 
0.4990 
0.502 64 
0.345 7 
0.3505 
0.34906 

0.1260 
0.125 8 
0.12592 

0.031 3 
0.031 3 
0.031 44 

0.007 58 
0.007.93 

Y A  

0.1962 
0.1976 
0.19882 

0.2288 
0.2289 
0.22889 

0.3147 
0.3147 
0.3 14 85 

0.4007 
0.401 1 
0.401 94 

0.4494 
0.45022 

YE 

0.767 5 
0.771 5 
0.77478 

0.762 6 
0.7599 
0.75864 

0.6845 
0.683 8 
0.68355 

0.5968 
0.5969 
0.59802 

0.5483 
0.54968 

r 
6.693 
6.735 
6.761 9 

6.472 
6.532 
6.512 

6.310 
6.315 
6.3140 

6.262 
6.274 
6.285 1 

6.242 
6.2833 

TABLE 1. Comparison of numerical solution for the incompressible Pocklington vortex with present 
hodograph-plane numerical solutions, M, = 0. Values of J XI shown. qm = 1 ,  A = 1. 

concentrated near q, = 1 and q = qo. Use of a x 2.9 for qv = 20 stretches the q- 
variable in this region but also introduces derivatives of large magnitude into error 
terms neglected in second-order differencing. Also it may be expected that predictions 
of qo will be sensitive to possible errors of O(h)i) in $ near (q, 0) = (ao, 0) owing to our 
crude treatment of the O(s$ singularity described in $4. The presence of this 
singularity and of the equivalent one for & near (q,0) = (1, n) renders a formal error 
analysis difficult and none has been attempted. 

5.3. The CPV results 
The parameter space for the CPV calculations are summarized in figure 4 and in 
tables 2 4 .  In the tables a is one half of the maximum x-dimension of each vortex and 
b = 0.5(yB -yA) (figure 1). Hence b/a is a measure of the ellipticity of the vortex core. 
Specific examples of streamlines in the (q,6)- and (z,y)-planes are shown in figures 
6-11. 

Figure 5 shows an example of the finite-difference grid mapped into the physical 
plane. This was obtained by integrating (3.1), (3.2) and (3.6) along lines a( [ )  = 
constant in the (6, rj)-plane using a fourth-order Runge-Kutta method with step size 
Ap = iArj near (q,0) = (qo, 0) and Ap  = Arj elsewhere. The required initial conditions 
x(O), y(0) in the physical plane were first found by integration along r j  = 0 from the 
( x ,  y)-origin 0. An analytical integration based on the local form of $ given by (2.20) 
near 0 was used for the first step. Near q = 0 in the (q, 0)-plane a four-term expansion 
of the type (2.32) was used in which the C;m were determined from the numerical 
solution for $ by integration on J = 4. Note in figure 5 the very large deformation 
of the finite-difference cell containing 0 produced by the square-root singularity in 

CPV computations were performed by incrementing M ,  from zero while qv is held 
constant. At sufficiently large M,, the local Mach number on the vortex boundary 
M, = qv/cv, given by 

the (q, 0)  + (x, y) mapping. 
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0.2 . 

0.1 . 

0 -  
2 4 6 8 1 0  20 40 60 80 100 200 

4 v  
F~UURE 4. Summary of parameter space and limitations imposed by solution characteristics. 
0,  computed point; -, evacuated vortex (equation (5.2) ; ----, M, = 1.0 (equation (5. l)), . . . . . ., 
M, % 0.96; 0 , A > 0 encountered in (q,@)-plane. 

J x I  M ,  Po MIJ Mv $v D Area a/b r 
150x40 0 2.424 0 0 0.485 0.462 0.499 1.87 6.74 

76 x 20 2.425 0.470 0.465 0.487 1.91 6.67 
150x40) o’lo (2.430 ::iE} 0’2513 (0.473 0.457 0.492 1.90 6.71 

76 x 20 2.440 0.436 0.439 0.464 2.01 6.59 
150x40) o’20 (2.448 :=) 0’5108 (0.439 0.442 0.468 2.00 6.63 

76 x 20 2.46 0.383 0.413 0.4246 2.22 6.46 
150x40) Oa30 (2.47 ::;;:) 0’7882 (0.384 0.414 0.4253 2.22 6.47 

0.350 0.395 0.395 2.39 6.37 
150 76 x ”} 40 0.35 c::: 0.928 0’922) 0’9374 (0.354 0.397 0.398 2.39 6.40 

76 x 20 0.343 0.391 0.389 2.44 6.35 
150x40) 0’36 {i$ X::Ef) 0’9683. (0.347 0.393 0.391 2.43 6.33 

TABLE 2. Calculated properties for the compressible Pocklington vortex (CPV) pair. q, = 2.5. Values 
of M ,  wj shown. q, = 1, A = - 1. 

goes sonic. The curve Mv’= 1 is shown in figure 4. On increasing M, further, a 
limiting value is reached where pv and p ,  both vanish. This corresponds to the EV 
where qv = qev. This limiting M,,  the maximum possible value corresponding to the 
fixed qv, is given by 

1 
- = t(r-1) (&-1) (5.2) 
M2, 

and this curve is also shown on figure 4. 
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J x I  M ,  90 
150x40 0 2.69 

150 x 40 

150 x 40 

150 76x20) x 40 0.30 

76 x 20 } 0.31 
150 x 40 

{i::: 
{i::: 

MO 
0 

0.273) 0.273 

0.571 

0.933 

0.980 

Mv +v D Area 

0 0.640 0.482 0.351 

0.614 0.472 0.340 
0.3024 (0.817 0.475 0.342 

0.560 0.457 0.324 
o'6202 (0.563 0.459 0.325 

0.476 0.431 0.294 
0*9728 (0.480 0.433 0.294 

0.467 0.428 0.289 
'*01' (0.470 0.430 0.290 

TABLE 3. As table 2, gv = 3.0. 

alb r 
1.56 6.53 

1.59 6.44 
1.58 6.47 

1.69 6.36 
1.68 6.38 

1.94 6.23 
1.92 6.24 

1.97 6.21 
1.96 6.22 

J x I  Mm 90 

150x40 0 2.97 

150 x 40 

76x20} 0.15 {:::; 
150 x 40 
76 x 20 

150 x 40 

150 x 40 

150 76x20) x 40 0.220 (33;; 

Mrl Mv +v 

0 0 1.119 
0'306) 0.5125 {1.058 1.059 
0.305 

0'476) 0.7941 {o.986 0.987 
0.474 

0.893 ;::;:} 1'112 (0.892 

0.872 8:;:;) 1'183 (0.871 

0.850 

TABLE 4. As table 2, gv 

D 

0.498 
0.494 
0.493 

0.489 
0.488 

0.482 
0.481 

0.480 
0.480 

0.479 
0.478 

= 5.0. 

Area 

0.1258 
0.1241 
0.1239 

0.1215 
0.1213 

0.1173 
0.1171 

0.1162 
0.1160 

0.1150 
0.1147 

alb r 
1.182 6.315 
1.199 6.270 
1.198 6.275 

1.237 6.220 
1.237 6.224 

1.312 6.146 
1.313 6.150 

1.335 6.129 
1.336 6.132 

1.363 6.111 
1.364 6.113 

J x I  Mm 9 0  

150x40 0 3.03 

76 x 20 } 0.05 {;:;: 150 x 40 

76 x 20) o.lo (3.14 
150 x 40 3.10 

76x "} 0.15 {:::! 
150 x 40 

76 20} 0.1625 {3 3.27 25 
150 x 40 

MO Mv $v 

0 0 1.803 
1.743 0.153 0.5129 {l.,40 

Oe316} 1.117 {1,569 1.572 
0.313 

0*498} 0.492 2.014 {i::: 
o'542} 2.352 {1.263 1.257 
0.540 

TABLE 5. As table 2, qv 

D 

0.4989 
0.4980 
0.497 9 

0.495 2 
0.495 2 

0.491 0 
0.4908 

0.4899 
0.489 1 

= 10. 

Area alb r 
0.03134 1.041 6.274 
0.03122 1.047 6.253 
0.03121 1.047 6.262 

0.03082 1.071 6.22 
0.03084 1.071 6.23 

0.02988 1.147 6.15 
0.02994 1.155 6.16 

0.02900 1.221 6.14 
0.02935 1.227 6.15 

J x I  M m  90 MO Mv ~v D Area alb r 
150x40 0 3.04 0 0 2.49 0.499 0.0075 1.010 6.24 
150x40 0.05 3.06 0.153 1.118 2.26 0.498 0.0078 1.017 6.25 
150x40 0.08 3.07 0.247 2.287 1.966 0.494 0.0072 1.049 5.94 

TABLE 6. As table 2, 9, = 20. 
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FIGURE 5. Finite-difference grid in the physical plane, q, = 5, M, = 0.20; qm = 1, r= 2 ~ .  Lines 
of q(6) = const and O(7) = const shown. (J x I )  = (150 x 40). 

We now discuss the characteristics of the CPV numerical solutions for 2.5 < qv < 20, 
the approach for M ,  increasing (at constant qv) of physically acceptable CPV 
solutions towards the EV limit was found to be terminated by the appearance of 
effects which are summarized in figure 4. It has already been noted that the present 
hodograph formulation is restricted to solutions for which the flow at  0 is locally 
subsonic, i.e. M ,  < 1.0. This is because we have a locally subsonic solution of the type 
(2.20) near 0 built into the finite-difference structure. It might be thought possible to 
replace (2.20) by a locally transonic approximation valid near (q,  8) = (q,, 0) when 
M ,  > 1. This is not so, since under the assumed (x,y)-symmetry properties of the 
solution in the physical plane, it is easy to show, assuming the one-dimensional 
theory holds approximately, that the limiting streamtube bounded by y = 0 must 
then have an area maximum a t  x = 0, and this would require 8 < 0 near 0, which is 
not consistent with the hodograph restriction 0 < 6' < K. With qv = 2.5, 3 and 4 
respectively we found that our solutions were indeed terminated when M ,  + 1 .  When 
qv = 2.5 we found we could not proceed past M ,  = 0.96 at M ,  = 0.360 (table 2); 
when qv = 3 we were stopped at M ,  = 0.98 where M ,  = 0.310 (table 3); while when 
qv = 4 we were stopped at  M ,  x 0.98 at M ,  = 0.260 (not tabulated). As M o +  1, the 
streamlines in the (2, y)-plane between the vortex-boundary bottom at A in figure 1 
and 0 becomes flattened, and the flow approaches a uniform nearly sonic channel 
flow as illustrated in figure 7 ( b ) .  In the (q, @-plane, q, then approaches qv (see tables 
2 and 3) and $ becomes nearly singular on 8 = 0, q, < q < qv. This may be seen in 
figure 6(M, x 0.93) where the streamlines converge on the grid scale near (q, 6') = (qv, 
0). There is also some non-smoothness of the streamlines in figure 6 near 8 = 0. This 
is possibly the effect of the O($) singularity at ( q , O )  = (qo, O).This local irregularity 
always occurred in varying degrees near 0 and was generally confined to this region. 
The streamlines in the (2, y)-plane for the case of figure 6(b) shown in figure 7 (b )  are 
apparently insensitive to the small hodograph-plane irregularity near A 0  and thus 
remain smooth to the eye. 

We stress that the termination of qv = constant solutions when M o +  1 is due to 
restrictions on the hodograph-plane formulation. There may perhaps exist nearby 
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FIQURE 6. Contours of stream function $ in the (q, @-plane, -8gV < $ d +kV, 9; = 2.5, 
M, = 0.35. $ = 0 is the stagnation streamline. Equal increments in $. 

0 0:2 0.4 0.6 0.8 1.0 1.2 1.4 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

FIGURE 7. Streamlines in the (z,y)-plane. (a) qv = 2.5, M, = 0; (a) q, = 2.5, M, = 0.35, 
M, = 0.937, M, = 0.9284. Equal increments in $.pa = 1, r = 21~. 

X 

solutions with M ,  > 1, where the vortex boundary develops a waist at A,  but if so, 
these are unobtainable by the present method. 

When qv exceeds about 3, the results summarized in figure 4 and in tables 2-6 
indicate the existence, for M ,  above the M ,  = 1 curve, of families of continuous 
solutions corresponding to isentropic shock-free transonic flow. The vortex core is 
then surrounded by an annulus of supersonic flow outside which the flow is subsonic. 
Examples of streamlines in the hodograph and physical planes for transonic solutions 
are shown in figures 8(c ) ,  9 ( b ) ,  1O(c) and l l ( b )  respectively. Figures S(c) and 1O(c) 

1-2 
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90 
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0 (degrees) 
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4 

FIGURE 8. Contours of stream function $ in the (q, @)-plane, - 1.2$" < $ < $", q, = 5. 
(a) M ,  = 0, ( b )  M ,  = 0.20, (c )  M ,  = 0.22; ----, sonic line q = e*. 

show that a fluid particle which enters the flow domain of figure 1 near A can first 
undergo a deceleration to a subsonic state, and is thereafter accelerated towards the 
vortex top near B, to a state which may or may not be supersonic. The sonic lines 
of figures 9 (b) and 11 (b) obey Nikolskii & Taganov's theorem (Landau & Lifshitz 
1959) requiring a monotonically turning velocity vector, as we move along the sonic 
line. In figure 9 (b) the sonic line appears on the scale drawn to intersect the vertical 
axis below the vortex at an angle of less than go", possibly because of insufficient 
resolution in the calculation near 8 = 0, po < q < qv. To support this interpretation, 
we recall that, in view of (3.1), (3.2) and (3.6), the equation of the sonic line is 

so that, for small 8, 

Now it can be seen from figure 8 (c) that @e changes very rapidly from its value 0 on 
8 = 0 (giving dy/dO = 0 on 8 = 0) to its finite interior values. We have failed to resolve 
the effect of this transition so that the sonic line appears to have finite slope a t  
e=o .  
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FIGURE 9. Streamlines in the (5, &plane. (a) q, = 5, M ,  = 0 ; ( b )  pa = 5, M ,  = 0.220, Y, = 1.255, 
Mo = 0.798. Equal increments in @.----, sonic line. q, = 1, y = 2x.  

5.4. The appearance of limiting lines 
When qv = 5, 10 and 15, solutions with qv = constant were found to be terminated 
not when M ,  -+ 1, but by the earlier appearance in the supersonic subdomain of the 
(q, @-plane of regions where d > 0 (see (3.10)). This is indicated in figure 4. As was 
remarked in $3, the occurrence of d = 0 in the hodograph plane leads to cuspoidal 
streamlines in the physical plane, and the images of (9, @-plane curves where A = 0 
are called limiting lines (Kuo & Sears 1954). When d > 0, which can occur only in the 
supersonic subdomain, the physical plane becomes multiple valued and the fold is 
bounded by the limiting lines. The physical significance of the appearance of limiting 
lines in hodograph solutions of isentropic compressible flow has been much discussed 
in the literature, mainly in relation to external flow about airfoils (e.g. Garabedian 
& Korn 1971; Nieuwland & Spee 1973; Sobieczky & Seebass 1984) and to internal 
nozzle flows. We shall simply take the view that the vanishing of A signals the 
breakdown of the symmetric isentropic potential flow for our model of the 
compressible vortex pair. 

We note in passing that a steady recirculating flow about a vortex containing a 
compression shock or shocks is not possible since the entropy would not then be a 
single-valued function of position but would increase, following a particle with each 
passage through the shock. 

Regions of the (q, @-plane where d > 0 first appeared for qv = 5 at M ,  = 0.231 
(6M,  = 0.001) (J x I )  = (76 x 20) and at M ,  = 0.225, (6M,  = 0.005) (J x I )  = 
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FIQURE 10. Contours of stream function $ in the (9, @-plane, -0.75$r, < $ < $v, 9, = 10. 
(a) M, = 0 ;  (a) M, = 0.150; (c) M, = 0.1625.----, sonic line q = c*. 

4 

(150 x 40), where iSM, is the increment in M,. With qv = 10 we found A > 0 first a t  
M, = 0.1625 ( 6 M ,  = 0.0025) for both (J x I) = (76 x 20) and (150 x 40) while when 
p, = 15, A > 0 occurred when M ,  = 0.130 (6M,  = 0.005), (J x I )  = (150 x 40). These 
values for (J x I) = (150 x 40) are shown in figure 4, and the last entry in each of 
tables 4 and 5 shows the largest M, for which no regions of A > 0 or of I A I > 1/ 
( 4 d q L )  (indicating the possible presence of branch lines when A + co ; these were 
never found) in the (p, @-plane were detected. In figure 12 we show contours of $ and 
d in the (a, @-plane which illustrate the onset of A 2 0 as M ,  is increased at pv = 10. 
At M, = 0.150 streamlines are smooth in the transonic region. When M, = 0.1625 
the supersonic flow deceleration near the vortex boundary is rapid. This is 
exacerbated for M, = 0.1650 and two regions of A > 0 appear, one near 0 = 30' and 
a tiny, just visible second region near 0 = 70'. The vortex boundary shapes 
corresponding to figures 12(ii) and (iii) are shown in figure 13. At the point marked 
C in figure 13(b) the vortex boundary actually crosses itself on a small scale in a 
double cuspidal form, as expected. 

Although we found no difficulty in obtaining hodograph solutions for M , above 
the critical value when A = 0, no systematic attempt was made to fully search this 
region of (M,,qv)-space for the possible reappearance of solutions with A < 0 
everywhere. 
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FIQURE 12. (a) contours of + in the transonic region of the (q,B)-plane: (i) M ,  = 0.150; (ii) 
M ,  = 0.1625; (iii) M ,  = 0.1650. ( b )  contours of A (equation (3.9)) in the (q,B)-plane. Same qv, m, 
as for (a). Shaded region, A > 0. 
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FIGURE 13. Vortex boundary shapes in the physical plane, q, = 10. q, = 1 ,  r= 2n. (a) M ,  
= 0.1625 ; ( b )  M ,  = 0.1650 ; small regions corresponding to A > 0 in the (q, O)-plane are labelled C 

and D.  

We remark that for all calculations reported here, both the eigenvalues and the 
determinant of the Jacobian of (4.14) were checked to test for possible bifurcations 
but none were detected. As pointed out earlier we were unable to search for possible 
bifurcations to solutions with an asymmetric vortex boundary shape owing to the 
basic symmetry properties built into the solution method. 

5.5. The EV results 
Having described our results on the CPV we turn to the EV case. The principal 

physical parameters for the evacuated vortex are summarized in table 7, while the 
shapes of the half-vortex boundary on which M,+ co and p,, p, and T,+O, are 
shown in figure 14. In table 7 (ab): is a measure of the mean vortex radius F- and 
(a*b*)i is a measure of the mean radius of the sonic line P*. For isentropic 
compressible flow about an isolated evacuated vortex P * / F ~ ,  = [ (y+  l)/(y- l)];. 
There is only one parameter M ,  for the EV and the procedure followed was to 
increment M ,  from the minimum practicable value of M ,  = 0.02 where qev = 111.8, 
to a value where again regions where A > 0 were detected in the (q, O)-plane. With 
(J x I) = (600 x 30) and (300 x 40) this occurred at  M ,  x 0.0900 (6M,  = 0.0025) ; 
when (J X I )  = (150 x 40) (not tabulated), this happened at M ,  = 0.0925 (6M,  = 
0.0025). In figure 14 the vortex boundary shapes are only slightly elliptical at M ,  = 
0.02. Distortion of the boundary shapes increases with M ,  until when M ,  = 0.0900 
(not shown) the vortex boundary forms, near point C ,  the self-crossing cuspidal 
shape characteristic of the physical-plane fold produced when A > 0 in the (q, 6)- 
plane. The increasingly large deviation from a circle of the vortex shape when M ,  
increases is caused by the strain field generated by the presence of the companion 
vortex. This is analysed in detail in $6 where comparisons between the axis ratios 
a/b predicted numerically and by the perturbation theory are discussed. 

We found no evidence of possible bifurcations of the solution branch in the 
calculated range of M,, and no suggestion of a return to physically realizable 
solutions in the range 0.09 < M ,  < 0.20. 
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06 

FIGURE 14. Vortex boundary shapes in the physical plane for the evacuated vortex. From centre: 
M, = 0.02, 0.04, 0.06, 0.07, 0.08, 0.0875, limiting lines detected near point C for M, = 0.090. 
q, = 1, A = -1. 

5.6. Uniqueness 
Finally we note that where we obtained numerical solutions with A < 0 everywhere, 
these were smooth functions of M,,  suggesting that eigensolutions are not present. 
Moreover, had the problem been ill posed, the solution would have been sensitive to 
changes in the mesh size and to changes in $" and qo ; this would have been likely to 
have prevented the Newton iteration from converging. The detailed results presented 
in tables 1-8 reveal no such sensitivity to J or I ,  and we can infer lack of sensitivity 
to $, and qo from the convergence of the Newton method. Also for qv = 10, M ,  = 
0.104.160 (6M,  = 0.01) and M ,  = 0.1650-0.1750 (6M, = 0.0025) we have ex- 
amined the diagonal elements of the LU decomposition of the banded matrix. In 
particular the ratio of the smallest element to the next smallest was always nearly 
unity, indicating a non-singular matrix and further strengthening the case against 
eigensolutions. 

6. Approximate theory for M ,  4 1 
Since the incompressible flow corresponding to M ,  = 0 is known exactly, it must 

be possible to determine an approximation to the flow for M ,  -4 1 by the methods 
ofperturbation theory. However, as pointed out by Barsony-Negy et al. (1987, referred 
to as BN hereinafter) the occurrence of supersonic flow near the vortices renders the 
perturbation singular and they explain how to overcome this difficulty using 
matched asymptotic expansions. We shall apply their method to our problem to 
obtain, in particular, an estimate of the shape of the vortex boundaries. 

For this calculation, it is convenient to non-dimensionalize differently, reflecting 
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the fact that we shall be working in the physical plane. Thus we define a 
dimensionless complex coordinate z and velocity potential q5 by 

(6.1) D z  = x' + iy' 

and 

6.1. The far  field 
First we develop the RayleighJanzen expansion 

q5 =do+Mkq5,+ ..., (6.3) 

where q50 = Re{-iln(z-i)+iln(z+i)-+z} (6.4) 

is the incompressible flow for a vortex pair. Substitution of the expansion (6.3) in the 
governing equation for the velocity potential 

v2q5 = 2M2Vq5 * V( (Vq5)2), (6.5) 

where 

is a local Mach number, leads to 

V2$1 = 2vq50.v((vq50)2). 

We insist that # , + O  a5(z I+co  

(and here our procedure differs from BN) and find that the solution of (6.7) satisfying 
(6.8) is 

q5, = [2(z2+ 1)(g2+ ~ ) ] - ' R ~ ( ( ~ Z - ~ Z ~ Z + Z ~ ) .  

This result enables us to calculate the velocity at 0 and we find 

(6.10) 

which can be used to provide an initial estimate for q,, for the solution of (2.33) and 
(2.34) in the evacuated vortex case. 

We note in passing that, according to (6.10), M ,  = 1 when M, = 0.281 ..., 
confirming how repidly compressibility effects become important near the vortex 
pair as M ,  is increased. 

We can see from (6.9) that q5, is singular at z = f i  and that q51 ha: a worse 
singularity than q50. In fact if we introduce local polar coordinates (+,8) defined 

z = i++eii, (6.11) 
by 

then, as + + O  with M, fixed, 

cose 3 q5 - ê -32 
4; 4 

(6.12) 

BN remove the P1 term by adding to q51 a complementary function which cancels 
it, but we prefer to remove it by a small change of origin of our local polar coordinate 
system. In fact, if we replace (6.11) by 

z = i( 1 -$Ilk) + r ele, (6.13) 
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we can show that Q = 8-hz sin28-iM2, sin28+ ... . (6.14) 

The second term in (6.14) is the strain field due to the second vortex and it will 
emerge that it is responsible for the shape distortion. 

6.2. The nearfield 
This approximation is valid only so long as compressibility effects are small, so that 
it applies in the range M ,  4 r 4 1 and is the inner form of the outer expansion of q5. 
Thus we must seek a complementary inner approximation valid when 0 < r g 1 and 
insist that the two approximations agree in their common region of validity. It is 

(6.15) 
convenient to put 

r = s M ,  
and seek an expansion of the form 

q5 = 8 + M 2 , Q l ( s , 8 ) +  ... 
Substitution into (6.5) leads to 

(6.16) 

an equation due Taylor (1930). BN show that (6.17) can be integrated in terms of 
hypergeometric functions, and if 

7 = 2(y- 1)  8-2, (6.18) 

the general solution with angular dependence sin 28 is 

q51 = 7(Aw1(7) + Bw2(7)) sin 28. (6.19) 

In  (6.19), w1(7) = P(a, b, 3,7) (6.20) 

is the solution of the hypergeometric equation regular at T = 0 and wz is the linearly 
independent singular solution whose behaviour as 7+0 is given by (Abramovitz &, 
Stegun 1970, p. 564) 

(6.21) wz(7) = Bz ,+-+ln~+O(l).  P1 

7 7  

In (6.20) and (6.21) a and b are given by 

(6.22) 

(6.24) 
2 

P1 = (1-a)(l-b)* 
and 

The asymptotic behaviour (6.21) shows that for r / M ,  S 1 the outer form of the 
inner expansion is 

Q = e+ M : B B ~ + -  B’z rz) sin 20 + . . . . ( 2(Y - 1) 
(6.25) 
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Comparing (6.14) and (6.25) shows that the two expressions agree if 

3 
B/?, = -a 

the fact that, with this value of B, 

is a check of consistency. 

(6.27) 

6.3. The boundary shape 
We next consider how to calculate the shape of the vortex boundary. The 

unperturbed shape is a circle 7 = T ~ .  In view of the @-dependence of the O(MZ,) terms 
in 9, it is reasonable to suppose that the perturbed shape is 

T = ? B + M ~ D , c o s 2 8 + . . . .  (6.28) 

The constants A in (6.19) and Do are determined by the two requirements that (6.28) 
is a streamline and that IVq5(2 is constant on (6.28), both conditions being satisfied to 
O(M2,) only. We shall suppress the lengthy algebra involved and give only the final 
result. Equation (6.28) represents an ellipse with axis a parallel to the flow at m and 
axis b parallel to the line joining the vortices. Out result is 

(6.29) 

Before we can use (6.29), we must express T~ in terms of the parameters of the 
problem and, to leading order, 

7 B  = (2) . (6.30) 

The evacuated vortex if3 thus 7B = 1, and letting T~ + 1 in (6.29) gives, for y = 1.4, 

(6.31) 

Thus the perturbation theory shows that the vortex cores are ellipses, with their 
major axes parallel to the flow and, in view of (6.13), their centres of vorticity shifted 
inwards relative to the incompressible far field. Such a shift was shown by BN to 
occur generally. In our case it implies that the propagation number P defined by 

2 

a 
b 
- = 1 +25.6 M ;  + ... . 

(6.32) 

is given by 

so that the effect of compressibility is to reduce the speed of the vortex pair. 

P = 1 - iM2, + . . . , (6.33) 

6.4. Cornprism With numerical results 
A comparison between our numerical results for the axis ratio and (6.29) is shown in 
table 8, the limiting form (6.31) being used in the evacuated cme. The agreement is 
good, except for the cmes qv = 2.5 and 3.0 where presumably the vortices are too far 
from the circular (see figure 7) in the incompressible case for perturbation theory to 
be applicable. 

The prediction (6.33) that compressibility slows down the vortex pair agrees 
poorly with the data, as is clear in table 9. The trend is correctly predicted by (6.33) 
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q, = 2.5 q v =  3 9, = 5 

M, Num. Pert. M, Num. Pert. M, Num. Pert. 

0 1.87 1.64 0 1.56 1.44 0 1.17 1.16 
0.10 1.90 1.66 0.10 1.59 1.47 0.10 1.20 1.18 
0.20 2.00 1.73 0.20 1.68 1.54 0.15 1.24 1.22 
0.30 2.39 1.87 0.30 1.92 1.69 0.20 1.31 1.28 

- 
M m  
0 
0.05 
0.10 
0.15 

q, = 10 q, = 20 

Num. 
1.041 
1.046 
1.069 
1.155 

Pert. 
1.040 
1.046 
1.069 
1.155 

M, Num. 
0 1.011 
0.05 1.016 
0.08 1.050 
- - 

Evacuated vortex 

Pert. M, Num. Pert. 
1.010 0.02 l.0lOt 1.010 
1.017 0.04 l.040t 1.041 
1.052 0.05 1.064 1.064 
- 0.07 1.094t 1.092 
- 0.08 1.172 1.164 
- 0.0875 1.199 1.196 

TABLE 8. Axis ratios for vortex core versus M,. Compressible Pocklington vortex; values of q, 
shown, (J x I) = (150 x 40). Evacuated vortex : (J x I )  = (300 x 40). t (J x I )  = (600 x 30). q, = 1, 
A = -1. 

qv = 2.5 q, = 3.0 

M ,  Num. Pert. M ,  Num . Pert. 

0 0 0 0 0 0 
0.10 0.005 0.0025 0.10 0.005 0.0025 
0.20 0.023 0.01 0.20 0.024 0.01 
0.30 0.057 0.0225 0.30 0.056 0.0225 

q, = 5.0 q, = 10.0 

0 0 0 0 0 0 
0.10 0.004 0.0025 0.05 0.0001 0.00063 
0.15 0.006 0.0056 0.1 0.0003 0.0025 
0.20 0.008 0.01 0.15 -0.0017 0.0056 

q, = 20 Evacuated 

0 0 0 0.02 0 0 
0.05 0.004 0.00063 0.04 0.01 1 0.0003 
0.08 -0.035 0.0016 0.05 0.0048 0.00053 

0.06 0.0163 O.OOO9 
0.07 0.0065 0.0011 
0.08 0.0149 0.0015 

TABLE 9. Effect of compressibility on propagation number, using finest grid results in each case. 
Numerical values are P(0)-P(M,)  except for the EV where P(O.OS)-P(M),) is displayed. 
Perturbation values obtained from equation (6.33). 

when qv = 2.5 and 3.0 but the effect is underestimated. With qv = 5.0 the agreement 
is better, but at larger qv the data reveal no clear trend. We suspect that this may 
be due to errors in the numerical value of D, which is hard to calculate accurately 
because of the singularity a t  0. The axis ratio is, of course, unaffected by slight errors 
in the y-coordinate of A. 
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Finally, we note that eigensolutions in the form of trapped small-amplitude sound 
waves of elliptical form would correspond to the vanishing of the denominator of 
(6.29). Numerical evaluation reveals that this denominator is negative for all T~ when 
y = 1.4, so we have further support for our contention that eigensolutions are not 
possible for our problem. 

7. Conclusions 
We have demonstrated by numerical means that vortex pairs with stagnant cores 

can propagate steadily in a compressible fluid. Moreover, the flow with respect to 
axes fixed in the pair can be transonic and shock free. However, unlike the case of 
a rigid symmetric aerofoil for which transonic shock-free flows are isolated (in the 
sense that they do not persist under small changes of profile for fixed conditions at 
infinity or small changes in conditions at infinity for a fixed profile (Morawetz 1956, 
1957, 1958)) a family of shock-free transonic flows which depend smoothly on the 
Mach number at infinity, M,, appears to exist for sufficiently small core radii. Of 
course, the shape of the cores responds to the change in M,, so there is no conflict 
with Morawetz’s results. 

This numerical work extends to the fully nonlinear regime the work of BN who 
showed, using matched asymptotic expansions, that shock-free transonic flows 
containing evacuated vortices existed. 

Qualitatively, a vortex pair of given dimensions and circulation has its speed of 
propagation reduced and the distortion of its boundary increased by compressibility 
effects. 

For vortices with large cores, limitations of the hodograph method prevented us 
from entering the transonic regime. For smaller cores, transonic flow occured, its 
extent increasing with M ,  until limit lines appeared. 

We have not been able to determine the value of M, at  which, for a vortex at given 
dimensions and circulation, shocks form in the recirculating region. It would be 
interesting to study this - necessarily unsteady - flow by solving the time-dependent 
Euler equations numerically. 

We are grateful to Professor Barsony-Nagy for permission to use his results prior 
to their publication. 

Appendix A 
We define local coordinates in the hodograph plane by 

Introducing this change of variable into (2.12) leads to 

- ( l+a)(p , -p , ( l+a)2) -+pp, (2a+a2)  a+ a2+ -, (A 2) 
aa aP 
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where p ,  = i ( y - l ) M & ,  p ,  = 1+p1,p3  = +(?-3)M& and p4  = ; ( y + l ) M L .  Near the 
singularity at  (0,O) (A 2) takes the form 

-+(1-M&)-=O 
aa2 aP 

with $(a,O) = 0 (a  < 0) (A 4) 

and v ( a , o )  = 0 (a  > 0). (A 5 )  

We introduce the local polar coordinates (9,s) defined by 

iP s ei6 = a+ 
(1 -M&)f 

Then possible solutions of (A 3)-(A 5 )  are of the form 

$ = P I 2  COShS, 

where m has integral values. We must appeal to the form of the solution in the 
physical plane to see that, as described in $2, m = - 1. 

Thus we write $ = $o+ $1, where 

+o = A s-; COS&?, (A 8) 

so that, on identifying the dominant terms on the right-hand side of (A 2), 

Here 

and the identity 

has been used to eliminate P-derivatives. The complementary function in (A 9) is 

B si cos id  + O ( t )  (A 11) 

and the particular integral is, after some algebra, 

As;@,  cos$?+B, cosg), 

where 3( 1 + i ( y  - 1)M:) B, = -a( 1 -M&),  
8( 1 -M&) 

1 +t (y -  1 ) M k  B, = 
16(1 -M%) * 

Appendix B 

function at  the boundary of the evacuated vortex. 

and r; distance from the lower. Then the incompressible stream function is 

In this Appendix we find a leading-order approximation to the value of the stream 

Let r; denote the distance of the point (z’, y’) from the upper vortex centre (0, D’) 
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note that $’(x’,O) = 0 as in $1. As we have pointed out in 96, this is an outer 
expansion, valid when 

(B 2) ri, r i  4 D M , .  

When ri 4 I ,  we can calculate v for the solution for an isolated hollow vortex. 
Thus 

where s denotes stagnation conditions and (2.10) has been used to calculate p’. We 
note that the radius R of the EV boundary is given by 

so (B 3) holds for ri 2 R. It follows that 

(B 5 )  II.’ = - r P :  ((1 -s)& In s+P(s)  -P(l))+ fv, 
4x 

where P(8) = - Inu(t-u)sdu,  
Y--l 

and where s = R 2 / r i 2 .  
For rl % R, (B 5 )  gives 

y=- r~‘ (-~n ri + ~ n  R -V(I)) + K. (B 8) 

Now A = p’, +O(M2,), (B 9) 

2x 

so that, comparing (B 1) and (B 8) in their common region of validity gives 

For y = 1.4, P(1) = -1.6804, while for y = 1.667, P(1) = -1.2804. 
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